leetcode 4
两个已排序数组,超出所有这些数中第k大的元素。
只有最简单的暴力方法AC了……
思路:
1. 暴力合并然后排序 124 ms
class Solution(object):
def findMedianSortedArrays(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: float
"""
nums=nums1+nums2
nums.sort()
#奇数个
if (len(nums1)+len(nums2))==1:
return nums[0]
elif((len(nums1)+len(nums2))%2==1):
return nums[len(nums)/2]
else:
return (nums[len(nums)/2-1]+nums[len(nums)/2]) * 0.5
2. 双指针计数
排序这个过程太浪费了
边界条件没有考虑全:
class Solution(object):
def findMedianSortedArrays(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: float
"""
i,m,n=0
while i<(len(nums1)+len(nums2))/2:
if nums1[m]<nums2[n]:
m++
i++
if i==(len(nums1)+len(nums2))/2:
return nums1[m]
else:
n++
i++
if i==(len(nums1)+len(nums2))/2:
return nums2[n]
3. 类似二分查找
https://leetcode.com/discuss/15790/share-my-o-log-min-m-n-solution-with-explanation
抓住问题本质,把问题转化成在一个列表中进行二分查找
def findMedianSortedArrays(self,A, B):
m, n = len(A), len(B)
#令前一个比较小
if m > n:
A, B, m, n = B, A, n, m
if n == 0:
raise ValueError
imin, imax, half_len = 0, m, (m + n + 1) / 2
while imin <= imax:
i = (imin + imax) / 2
j = half_len - i
if j > 0 and i < m and B[j-1] > A[i]:
# i is too small, must increase it
imin = i + 1
elif i > 0 and j < n and A[i-1] > B[j]:
# i is too big, must decrease it
imax = i - 1
else:
# i is perfect
if i == 0: max_of_left = B[j-1]
elif j == 0: max_of_left = A[i-1]
else: max_of_left = max(A[i-1], B[j-1])
if (m + n) % 2 == 1:
return max_of_left
if i == m: min_of_right = B[j]
elif j == n: min_of_right = A[i]
else: min_of_right = min(A[i], B[j])
return (max_of_left + min_of_right) / 2.0